
Concurrency Viewpoint

Lotfi ben Othmane



2

Client-Server Architecture

We deploy only one application server. 
Each user can install the client on their device.



How many processes should the software run in at most?
How many processes should the software run in the least?
How many processes should the software run in?

3

Motivating Example (1)



How many processes run in the car?
How do they communicate?

4

Motivating Example (2)



import can

PID_REQUEST = 0x7DF
PID_RESPONSE = 0x7E8

bus = can.interface.BUS(channel=‘can0’, bustype=‘socketcan_native’)

Message = can.Message(arbitration_id=PID_REQUEST, data=[ID_FIRST_BYTE, 
ID_SECOND_BYTE, pid, 0x00, 0x00, 0x00, 0x00, 0x00], extended_id=False)

bus.send(message)

message = bus.recv()
if message.arbitration_id == PID_RESPONSE:

5

Motivating Example (2)

What happen when there are data in the 
CAN bus but the program is busy 
processing previously received data?



Concurrency viewpoints involve partitioning the system into 
components that execute at the same time and setting 

coordination and control mechanisms for these components.

6

Overview



Concurrency viewpoint includes:

Process model – the set of processes and threads and inter-
process communication mechanisms

State model – the set of states and transitions for some 
functional elements

7

Overview



Parallelism: operations are performed on independent or 
duplicated resources. The results may be merged.

Concurrency: operations are performed on shared resources 
considering a set of constraints.

8

Concurrency vs Parallelism



import can

PID_REQUEST = 0x7DF
PID_RESPONSE = 0x7E8

bus = can.interface.BUS(channel=‘can0’, bustype=‘socketcan_native’)

Message = can.Message(arbitration_id=PID_REQUEST, data=[ID_FIRST_BYTE, 
ID_SECOND_BYTE, pid, 0x00, 0x00, 0x00, 0x00, 0x00], extended_id=False)

bus.send(message)

message = bus.recv()
if message.arbitration_id == PID_RESPONSE:

9

Motivating Example

Use threading to solve the problem of 
data loss



1. Availability – through redundancy
2. Modifiability – better flexibility to extend the system
3. Scalability – support heavy load
4. Security – rights to access resources

5. Performance – we will revisit this

10

Requirements Types Related to Concurrency



1. Should we have “validate the data” 
in a separate process?

2. Should we have “collect data from 
sensors” and “collect data from 
cameras” in the same process?

11

Principle: Balance Computation and 
Communication

How do you partition the 
functionalities into 
processes?
What is the cost of 
communication?



Define the system process structure (set of processes) 
considering:

• Partitioning the workload into the processes
• Use operating system capabilities in terms of process 

grouping and threading

12

Concerns 1 – Task Structure



Concurrency elements:

Process – independent isolated execution unit, each uses an OS 
execution environment.

Thread – execution unit that can be scheduled within 
processes.

Process group – a set of processes that address a concern.

13

Concerns 1 – Task Structure



How many processes do we need?

14

Concerns 1 – Task Structure



Goal: Map functional elements to tasks

Questions:
1. Which functional elements need to be isolated from each 

other?
2. Which functional elements need to cooperate closely?

15

Concerns 2 – Map Functional Elements to 
Processes



• Should we make detect infringements, send alerts, and 
make alerts in one process or separate processes?

• What about collect sensing data and collect camera stream?

16

Concern 2 – Map Functional Elements to 
Processes



1. Message passing – send and receive messages through the 
network

2. Remote procedure calls – a process calls a procedure on 
another process

3. Application Programming Interface (API), e.g. web services 
and microservices

4. Data-sharing mechanisms – shared memory, files, and 
databases

5. Coordination mechanisms – e.g. semaphore and mutex
6. Etc.

17

Concern 3 – Inter-process Communication



import can

PID_REQUEST = 0x7DF
PID_RESPONSE = 0x7E8

bus = can.interface.BUS(channel=‘can0’, bustype=‘socketcan_native’)

Message = can.Message(arbitration_id=PID_REQUEST, data=[ID_FIRST_BYTE, 
ID_SECOND_BYTE, pid, 0x00, 0x00, 0x00, 0x00, 0x00], extended_id=False)

bus.send(message)

message = bus.recv()
if message.arbitration_id == PID_RESPONSE:

18

Concern 3 – Inter-process Communication

What mechanism is used to 
communicate with the car?



19

Concern 3 – Inter-process Communication



Each inter-process communication mechanism has advantages 
and disadvantages

Criteria:
1. Synchronous vs asynchronous communication
2. Type of data (Jason, xml)
3. Persistence
4. Location of the communicating process (same node?)
5. Performance – use of transient object provides better 

performance than use of persistent object
6. Reliability – loss of messages, failure of process
7. Etc.

20

Concern 3 – Inter-process Communication



What mechanism should you use for sensor data collection 
communication?

21

Concern 3 – Inter-process Communication (IPC)



The runtime state of some system elements is important to 
correct operation of the system.

• In event-driven systems

The elements would have
• A set of states
• A set of transitions between the states

22

Concern 4 – State Management



import can

PID_REQUEST = 0x7DF
PID_RESPONSE = 0x7E8

bus = can.interface.BUS(channel=‘can0’, bustype=‘socketcan_native’)

Message = can.Message(arbitration_id=PID_REQUEST, data=[ID_FIRST_BYTE, 
ID_SECOND_BYTE, pid, 0x00, 0x00, 0x00, 0x00, 0x00], extended_id=False)

bus.send(message)

message = bus.recv()
if message.arbitration_id == PID_RESPONSE:

23

Concern 4 – State Management

Would it be ok that two nodes send on 
the bus at the same time?



24

Concern 4 – State Management



• Data shared among a set of threads/processes must be 
coherent and not corrupt.

• Concurrency mechanisms need to coordinate concurrent 
activities on shared resources.

25

Concern 5 – Synchronization and Integrity



Concurrency allows to scale systems to address heavy load.

Little concurrency or naïve synchronization mechanisms 
negatively impact the ability to scale the system

• Functionalities that can run in parallel
• Constraint: the shared resources

26

Concern 6 – Support for Scalability



• Processes may have dependencies.

• Starting the system set of processes should consider these 
dependencies

• Shutting down the system needs to consider the processes’ 
dependencies – e.g. ensure no data is lost

27

Concern 7 – Startup and Shutdown



• Some of the system’s processes could fail, e.g. due to 
hardware failure or exception.

• Concurrency design should include system-wide monitoring 
and recovery in case of failure.

28

Concern 8 – Task Failure



• Component A needs to correctly operate though it is used 
by a set of concurrent components Bi.

• E.g. the data analytics component needs to be reentrant to 
allow data storage queries.

29

Concern 9 - Reentrancy



Concurrency view maps functional elements to runtime 
execution entities via concurrency model.

Concurrency model includes:
1. Processes
2. Process groups
3. Threads
4. Inter-process communication

30

Concurrency Model



31

Example - Representation of Concurrency



1. Map elements to processes – define the number of needed 
processes and assign functional elements to processes.

2. Determine threading design – number of threads for each 
process.

3. Determine mechanisms for resource sharing – identify 
shared resources and protocols to use them.

4. Determine the IPC (inter-process communication) 
mechanisms – decide on IPC for each communicating 
process.

5. Analyze contention – checks for processes that require 
shared resources concurrently.

6. Analyze deadlocks – check if Process A waits for a resource 
used by process B and B waits for A for another resource.

32

Activities for Concurrency Model



A state model describes the set of states that system runtime 
elements can be in and valid transition between them.

Entities:
• State – condition of the element
• Event – something of interest has happened
• Transition – change of state due to event
• Action – piece of processing associated with transaction

33

State Models



34

State Models



1. What are the two models that are used to represent 
concurrency?

2. Is concurrency model a UML diagram?

3. What factors would you use to allocate functionalities to 
processes?

35

Self-Check



Thank You

36


